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We develop a molecular-statistical theory of the smectic-A–smectic-C transition which is described as a
transition of the order-disorder type. The theory is based on a general expansion of the effective interaction
potential and employs a complete set of orientational order parameters. All the order parameters of the smectic-
C phase including the tilt angle are calculated numerically as functions of temperature for a number of systems
which correspond to different transition scenario. The effective interaction potential and the parameters of the
transition are also calculated for specific molecular models based on electrostatic and induction interaction
between molecular dipoles. The theory successfully reproduces the main properties of both conventional and
so-called “de Vries–type” smectic liquid crystals, clarifies the origin of the anomalously weak layer contraction
and describes the tricritical behavior at the smectic-A–smectic-C transition. The “de Vries behavior,” i.e.,
anomalously weak layer contraction is also obtained for a particular molecular model based on interaction
between longitudinal molecular dipoles. A simple phenomenological model is presented enabling one to obtain
explicit expressions for the layer spacing and the tilt angle which are used to fit the experimental data for a
number of materials.
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I. INTRODUCTION

Smectic liquid crystals form layered phases with orienta-
tional ordering of anisotropic molecules. In the simplest
smectic-A �SmA� phase, the long molecular axes are on av-
erage parallel to the smectic layer normal and the phase is
uniaxial. In contrast, in the smectic-C �SmC� phase the mol-
ecules are inclined on average at an angle � with respect to
the layer normal. Tilted smectic phases attract a significant
attention mainly because of the rich variety of such phases
with unusual three dimensional structure �1,2�, which also
possess ferroelectric, antiferroelectric, and ferrielectric prop-
erties. On the other hand, ferro- and antiferroelectric tilted
smectic materials are extremely promising for the new gen-
eration of fast electro-optic displays as well as various non-
display applications �3�. One notes also that tilted phases of
exactly the same point symmetry as the thermotropic SmC
phase exist also in other orientationally ordered soft systems
including, in particular, mesogenic polymers, lamellar L�

phase and smectic-C elastomers, which receive increasing
attention �4–6�.

The molecular theory of the SmA-SmC phase transition
and the microscopic origin of the tilt in the SmC phase have
been an issue of debate ever since the first observation of the
temperature-dependent tilt angle � in early 1970s �7�. A
number of molecular models have been proposed �8–16�
based on different intermolecular interactions and packing
effects. For example, it is well known that the molecules
exhibiting the SmC phase usually possess transverse dipoles.
Thus McMillan �8� showed that a rotational freezing of such
molecules could result in a tilt. A similar model was pro-
posed by Wulf �9� who considered a model interaction be-
tween zig-zag shaped molecules.

One notes, however, that these models, as well as the
steric model proposed by Somoza and Tarazona �10�, empha-

size the ordering of short molecular axes as a necessary con-
dition for the tilt. On the other hand, the tilt may occur due
to interactions between uniaxial molecules, and one may
expect this mechanism to be predominant in most systems
due to the strength of the coupling between long axes of
strongly anisotropic mesogenic molecules. Among the
“uniaxial” models the most successful one was proposed
by van der Meer and Vertogen �11� who considered an in-
duced interaction between the permanent dipole and a polar-
izability of freely rotating adjacent molecules. However, as
shown by Goossens �12�, this model describes a change of
structure rather than a realistic order-disorder phase transi-
tion. Goossens himself pointed out that biaxial molecular
quadrupoles could give rise to a tilt of the director but he did
not obtain any general results. Nevertheless, Poniewierski
and Sluckin �13� have shown that the tilt in the smectic-C
phase can be stabilized by an interaction between uniaxial
quadrupoles, the important case which is in contradiction
with the Goossens model, and which emphasizes the impor-
tance of interactions between long molecular axes.

The significance of uniaxial intermolecular interactions is
also supported by recent computer simulations of the
smectic-C phase �14,15�. It has been shown that the
SmA-SmC transition can indeed be induced by electrostatic
interaction between uniaxial molecular quadrupoles �14� or
by interaction between pairs of antiparallel longitudinal di-
poles �15�. In contrast, transverse molecular dipoles appear
to be much less important. Finally Govind and Madhusudana
�16� have recently presented a model based on electrostatic
interaction between off-axes transverse molecular dipoles,
which does not average out to zero by a rotation about the
long molecular axis. However, despite all these efforts, there
is still no satisfactory realistic molecular theory of the SmC
phase. In particular, none of the existing theories can de-

PHYSICAL REVIEW E 76, 051706 �2007�

1539-3755/2007/76�5�/051706�16� ©2007 The American Physical Society051706-1

http://dx.doi.org/10.1103/PhysRevE.76.051706


scribe the first order smectic-A–smectic-C transition which is
often observed experimentally �1�. The existing models also
cannot be used to describe the properties of novel smectic
liquid crystals with weak layer contraction.

When a liquid crystal undergoes a transition from the
SmA phase to the SmC phase, in most materials the layer
spacing p decreases by a factor of cos � �3,17,18�. This layer
shrinkage appears to be a very negative factor in manufac-
turing and operation of electro-optic devices based on ferro-
and antiferroelectric smectic-C* liquid crystals. The main
obstacle in commercialization of such devices is related to
the problems determined by the contraction of smectic layers
at the transition from the paraelectric SmA* phase to the
ferroelectric SmC* phase �3,18,19�. This contraction, to-
gether with a positional anchoring of smectic layers at the
surfaces of a thin cell leads to a buckling of layers in a
chevron geometry. The development of such chevron struc-
tures is accompanied by the formation of the so-called “zig-
zag” defects and a reduction in effective optical tilt angle.
This seriously degrades the quality of electro-optic devices.

In fact, different materials show slightly varying degree of
contraction across the SmA-SmC phase transition. However,
a surprise was the discovery that in some smectic liquid crys-
tals there is almost no layer contraction at the tilting phase
transition �20,21�. Recent works have demonstrated that
there exist a number of smectic-C* materials with different
molecular structure �20–23� displaying virtually constant
smectic layer spacing. An understanding of why such mate-
rials do not show a contraction of the smectic layers at the
SmA*-SmC* transition, and why others do, is not only a key
issue for the development of ferro- and antiferroelectric liq-
uid crystal devices, but is also extremely interesting from a
fundamental research point of view, and may modify our
general concept of the whole class of tilting transitions in
various soft matter systems.

In most models, either the positional and orientational or-
ders are assumed to be ideal, or those two types of ordering
are decoupled �24�. In either case the biaxiality of the mo-
lecular distribution in the SmC phase is neglected. Thus
these models all adopt a conventional view of the transition
in which it is assumed that molecular axes simply tilt away
from the layer normal. In this picture, the SmA-SmC phase
transition has to be accompanied by substantial layer con-
traction determined by the factor of cos �.

An important exception is represented by a series of pa-
pers by de Vries �25–29� and Leadbetter �30� who developed
a qualitative model which is known as the de Vries model.
The model is based on the recognition that in all real smectic
liquid crystals the orientational ordering of long molecular
axes is not perfect. As a result, the mean square of the mo-
lecular tilt appears to be nonzero even in the SmA phase and
thus the most probable orientation of the long molecular axes
is not along the layer normal but on the surface of the cone
around the layer normal. The absence of a macroscopic op-
tical tilt in the SmA phase is then explained by a uniform
distribution of the tilt directions �molecular azimuthal
angles� in the layer plane. The transition to a tilted phase can
occur in this model simply through an ordering of the azi-
muthal angles leading to a well defined macroscopic tilt di-
rection. This ordering would not by itself produce any
change in the layer spacing.

From the point of view of theoretical physics, the de Vries
model corresponds to a different type of the tilting phase
transition. In the conventional model, the SmA-SmC transi-
tion is determined by the collective tilt of long molecular
axes. Such a transition is not accompanied by the onset of
any new ordering, and thus resembles a structural change.
But in the de Vries model the transition is determined by the
ordering of molecular azimuthal orientations and the director
tilt occurs as a consequence. At the same time, the distribu-
tion of molecular polar angles �i.e., the angles between mo-
lecular axes and the layer normal�, which determines the
average layer spacing, remains basically the same.

De Vries model is inconsistent with high orientational or-
der in the smectic-C phase and recent observations support
this. According to the results of x-ray experiments �31,32�,
the orientational order parameter in the SmC materials with-
out layer contraction is substantially smaller than in conven-
tional smectic liquid crystals. This conclusion is also ap-
proved by the order parameter measurements of a dichroic
dye dissolved in the smectic-C phase �32� and by recent IR
spectroscopy measurements �33�. Moreover, experimental
data indicate that the averaged orientational distribution of
long molecular axes about the smectic layer normal is essen-
tially the same in the SmA and SmC phases �31�. In contrast,
the positional �smectic� order seems to be very high. This is
compatible with the molecular structure of novel smectic
materials containing either fluorinated chains or siloxane
groups. These groups enhance layering due to partial mi-
crophase separation between different molecular fragments.
The importance of this separation has also been revealed by
recent experimental studies. In real smectics C both mecha-
nisms could in principle contribute. Indeed, recent x-ray and
ellipsometric results indicate the existence of crossover be-
havior between conventional and “de Vries–type” smectics A
�34�.

The primary goal of the present paper is to develop a
molecular-statistical theory of the SmA-SmC tilting transi-
tion in the presence of some orientational disorder. It is
shown that such a model can be used to describe both con-
ventional smectics and smectics with anomalously weak
layer contraction. Moreover, it allows to trace how the details
of the model interaction potential affect the scenario of the
SmA-SmC transition. Since the nematic order is not assumed
to be high in this approach, the transition is described as a
true order-disorder phase transition with complete set of ori-
entational order parameters of the smectic-C phase, which
has been achieved in none of the previous models. Some
preliminary results of this study have already been published
�35�.

The paper is arranged as follows. In Sec. II we present a
simple phenomenological model of the SmA-SmC transition
which enables one to obtain explicit expressions for the tilt
angle and smectic layer spacing, and to describe a crossover
between the conventional and de Vries–type behavior. The
expression for the layer spacing is used to fit the experimen-
tal data for a number of conventional and de Vries materials.
Section III is devoted to the application of the density func-
tional theory to smectic liquid crystal with perfect transla-
tional order and derivation of the order parameters. In that
section temperature variation of all the order parameters is
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calculated numerically. Weak layer contraction and tricritical
properties are considered in Secs. III C and III D, respec-
tively. Section IV describes how the constants of the mean
field potential can be related to particular model pair inter-
actions of molecules with elongated core, dipole moments,
and polarizability. Finally, we present the summary and draw
the general conclusions in Sec. V.

II. SIMPLE PHENOMENOLOGICAL MODEL

Before developing a molecular statistical theory of the
SmA-SmC transition let us first consider a simple phenom-
enological model which enables one to obtain explicit ex-
pressions for the layer spacing p and the tilt angle � of the
smectic-C phase. One notes that the first model of this kind
has been proposed by Chen and Lubensky long ago �36�. In
this model, the free energy is considered as a function of the
components of the wave vector k of the smectic density
wave. In the smectic-A phase, the wave vector k is parallel to
the director n which is assumed to be along the z axis. Then
the transition into the smectic-C phase is indicated by the
appearance of the perpendicular to z component k� in the
direction of the tilt.

As a generalization of this idea one may consider an ex-
pansion of the free energy of the smectic-C phase in terms of
both wave vector k and the orientational tensor order param-
eter Qij = �aiaj −�ij /3�, where a is the unit vector of long
molecular axis. Neglecting the small biaxiality of the
smectic-C phase the tensor order parameter can be expressed
as Q�S�n ·n−I /3� where S is the nematic scalar order pa-
rameter. Similar models based on such an expansion have
been considered before �37,38�, but they have not been used
to describe the variation of the smectic layer spacing. Now
one can also include the experimental observation that the
nematic order parameter S is abnormally small in de Vries
materials �1�. The free energy can then be expanded in pow-
ers of Q, retaining for simplicity only linear and quadratic
terms. As a result one obtains the following model free en-
ergy of the smectic-C phase:

FC = F0�S� − b1S2k2 − e1�k · Q · k� + g1�k · Q · Q · k�

+ b2S2k4 + e2�k · Q · k�2 + g2k2�k · Q · k�

+ ck2�k · Q · Q · k� . �1�

Substituting the expression for Q, we can rewrite the free
energy in terms of kz= �k ·n�, k2=kz

2+k�
2 and S. In particular,

simple explicit expressions for k and � can be obtained
when g1=g2=0. In this case the free energy �1� can be re-
written in the following dimensionless form:

F̃C = F�S� +
1

2
�q2 − 1�2 + f1S−1� + f2�2 + c�k2� , �2�

where �=2q2−3q�
2 and the dimensionless wave vector q

=k /k0 with k0
2= �2b2� /b1� have been introduced. The dimen-

sionless coefficients f1, f2, and c� are expressed as f1
=2e1 /3b1, f2=2e2 /9b2�, c�=c /9b1, where b2�=b2−4c /27, and

the dimensionless free energy F̃C=FC2b2� /b1
2. Minimization

of the free energy �2� yields q2=1−c�� and �=−�f1S−1

−c�� /2�f2− �c��2�. Using these results one readily obtains the
following explicit expressions for k and �:

kC
2 = k0

2�2f2 − c�f1S−1��2f2 − �c��2�−1, �3�

sin2� =
2

3

2f2 + c� − f1S−1�1 + c��
2f2 − c�f1S−1 . �4�

In the SmA phase the wave vector kA is expressed as

kA
2 = k0

2�1 + f1S−1��1 + 2f2 + 2c��−1. �5�

In the present model, the SmA-SmC transition is governed
by the temperature dependence of the nematic order param-
eter S�T�. One can readily see from Eq. �4� that

sin2� � �S − SAC� , �6�

when S exceeds the critical value

SAC =
f1�1 + c��
�2f2 + c��

�7�

and the tilt angle vanishes when S�SAC. Normally, the order
parameter S�T� is increasing with the temperature decreas-
ing. For S�SAC the right-hand side of Eq. �4� is negative if
2f2�c�f1S−1, and hence there is no nonzero solution for �.
Thus the system is in the smectic-A phase when S�T��SAC.
The transition into the smectic-C phase occurs when S
reaches the critical value SAC. One notes that this mechanism
of the SmA-SmC transition is possible only if the order pa-
rameter S is far from saturation. This condition is satisfied in
many smectic-C materials and, in particular, in de Vries
smectics where S is of the order of 0.6−0.7 at the SmA-SmC
transition point �1�.

In the SmA phase �see Eq. �5�� the layer spacing pA
=2	 /kA always increases for decreasing temperature; this is
also true experimentally for practically all materials with low
layer contraction �1�. In the SmC phase, the layer contraction
is controlled by the parameter c�. The spacing is constant for
c�=0, which can be regarded as ideal de Vries behavior. On
the other hand, it follows from Eqs. �3�, �4� that kz
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FIG. 1. Typical variation of smectic layer spacing versus nem-
atic order parameter according to phenomenological formulas �3�
and �5�. Conventional contraction �solid line� is shown for c�=2,
f1=2, and f2=3. De Vries–like behavior �dashed line� corresponds
to c�=0, f1=2, and f2=1.5.
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=kC cos �=const when c�= f2−1. In this case the layer spac-
ing in the SmC phase decreases following the factor of
cos �. This is ideal layer contraction in conventional smec-
tics. Thus the simple phenomenological model describes
both limiting cases which correspond to ideal de Vries and
ideal conventional behavior, respectively. The dependence of
the layer spacing on the order parameter S in smectic-A and
smectic-C phases for the two limiting cases is presented in
Fig. 1.

Intermediate values of c� between 0 and f2−1 correspond
to a partial layer contraction in the smectic-C phase which is
observed experimentally for the majority of smectic materi-
als. Simple model expressions �3�–�5� allow excellent fitting
of experimental data for different materials of both de Vries
�3M 8422-2F3 and 3M mixture� and conventional �IPC-515
and DOBAMBC� types as shown in Fig. 2 and Table I. One
notes that the direct fitting of experimental data requires a
model for the temperature variation of S. Here the parameter
S�T� has been approximated as SA�T�� �TA−T��A in the
smectic-A phase and �SC�T�−SAC�� �TC−T��C where SAC is
the value of S at the SmA-SmC transition point. This ap-
proximation takes into account an additional growth of S in
the smectic-C phase induced by the tilt. This is justified by a

rapid growth of birefringence in the SmC phase of de Vries
materials �1� and by the molecular theory developed in Sec.
III B �see Fig. 5�.

The phenomenological model �1� uses a free energy ex-
pansion in terms of the order parameter S and components of
the smectic wave vector, which in general are not small.
Furthermore, the microscopic origin of the SmA-SmC tran-
sition is not completely clear. To overcome these limitations
we develop a molecular-statistical theory which is free of
these approximations.

III. MOLECULAR-STATISTICAL MODEL FOR THE
SMECTIC-C PHASE

A. General results

A molecular-statistical theory of the SmA-SmC transition
can be derived in the most general way using the density-
functional approach to the theory of liquid crystals �39–41�.
In this approach, the free energy of a liquid crystal F is a
functional of the one-particle distribution function f . For the
uniaxial molecules, the distribution depends on molecular
orientation 
 and its position r, i.e., f = f�
 ,r�. The general
structure of the functional F�f� is not known, but the func-
tional derivatives are known and are related to the direct
correlation functions in the medium. It is then possible to
perform a functional Taylor expansion of the free energy of a
liquid crystal phase around its value in the isotropic phase.
The free energy of a smectic at temperature T then can be
written approximately as

FS = FI + �kBT� f�
,r�ln�f�
,r���d
dr

−
1

2
�2kBT� C2�
1,r1,
2,r2�

 �f�
1,r1��f�
2,r2�d
1d
2dr1dr2 + ¯ , �8�

where FI is the free energy of the isotropic phase, � is the
number density, �f�
 ,r�= f�
 ,r�− �4	�−1, � is a constant,
and C2 is the direct correlation function of the isotropic
phase which is related to the full correlation function by the
Ornstein-Zernike equation. The general expression for the
free energy can be significantly simplified if one uses the

(a)

(b)

FIG. 2. Experimental data on temperature dependence of layer
thickness �a� and tilt angle �b� for four different compounds fitted
by the phenomenological relations �3�–�5�. The parameters used are
listed in Table I.

TABLE I. Parameters of phenomenological model used for fit-
ting the data in Fig. 2.

Parameter 3M 8422-2F3 3M mix IPC-515 DOBAMBC

TAC �°C� 63.3 52.7 139.4 90.3

c� 0.12 0.14 0.83 0.42

f1 0.28 0.37 0.96 0.41

f2 0.16 0.22 0.67 0.12

k0 �Å−1� 0.17 0.19 0.20 0.23

SAC 0.70 0.72 0.81 0.89

�A 0.13 0.12 0.16 0.05

�C 0.32 0.29 0.48 0.53
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approximation of perfect translational order in the smectic-C
phase. In combination with the fact that there is no positional
ordering within the layer, this means that the molecular dis-
tribution depends only on molecular orientation. For simplic-
ity, we take into account that the tilt of the director is mainly
determined by appropriate intermolecular interactions within
the same smectic layer, while the interaction between differ-
ent layers is of secondary importance here. Then the free
energy per unit area of a single smectic layer can approxi-
mately be expressed as

F̃S = F̃I + �2kBT� f�
�ln�f�
���d


−
1

2
�2kBT� C̆2�
1,
2�f�
1�f�
2�d
1d
2, �9�

where �2 is the 2D number density �number of molecules per
unit area of the layer� and

C̆2�
1,
2� = �2� C2�
1,R,
2�dR . �10�

The integration is performed over all intermolecular vectors
R which are perpendicular to the smectic layer normal k.

Minimization of the free energy �9� yields the Boltzmann-
type orientational distribution function

f�
� =
1

Z
exp	−

U1�
�
kBT


 , �11�

where Z is the normalization constant and the effective one-
particle potential U1�
� is expressed as

U1�
� = − kBT� C̆2�
1,
2�f�
2�d
2. �12�

Consider smectic-A and C phases composed of rigid
uniaxial molecules. In this case, the molecular orientation is
given by the unit vector a in the direction of the molecular
long axis �see Fig. 3�. Then the direct correlation function C2
depends on the unit vectors a1 and a2 which correspond to
the molecules “1” and “2,” and on the intermolecular vector
R. We consider nonchiral smectic phases, and thus the direct
correlation function must be even in R, a1, and a2 because
the phases are also nonpolar. It is convenient to introduce the
unit intermolecular vector r̂=R /R. Then the direct pair cor-
relation function C2�a1 ,R ,a2� may depend only on the inter-
molecular distance R and on scalar products of the unit vec-
tors a1 ,a2 , r̂. As a result the correlation function can be
expanded as

C2�a1,R,a2� � v1�R���a1 · r̂�2 + �a2 · r̂�2� + v2�R��a1 · a2�2

+ v3�R��a1 · a2��a1 · r̂��a2 · r̂�

+ v4�R��a1 · r̂�2�a2 · r̂�2, �13�

where all possible terms quadratic in a1,2 have been taken
into account.

Now the model direct correlation function �13� can be
substituted into Eq. �10�, integrated over R and then aver-
aged over a2 to obtain the explicit expression for the effec-
tive one-particle potential �12�. The averaging, however, is
more explicit if the correlation function �13� is rewritten in
terms of the molecular tensors qij

�1,2�= �a1,2�i�a1,2� j −�ij /3:

C2�a1,R,a2� = �q�1� + q�2��:M�R� + q�1�:N�R�:q�2�,

�14�

where the tensors M and N read

Mij�R� = 	v1�R� +
1

3
�v3�R� + v4�R��
r̂ir̂ j , �15�

Nijkl�R� = v2�R��ik� jl + v3�R��ikr̂jr̂l + v4�R�r̂ir̂ jr̂kr̂l.

�16�

One can readily evaluate C̆2 from Eq. �10�. The integration
over the unit intermolecular vector r̂ can be performed using
the equations

� dr̂r̂ir̂ j = 	Tij , �17�

� dr̂r̂ir̂ jr̂kr̂l =
	

4
�TijTkl + TikTjl + TilTjk� , �18�

where Tij =�ij −kikj.
The averaging over a2 in Eq. �12� is reduced to the aver-

aging of the molecular tensor q�2�, i.e., �q�2��=Q, where Q is
nematic tensor order parameter. Finally one obtains

U1�a� = −
1

2
�u1 +

u3

3
+

u4

3
�k · q · k + �u2 +

u3

2
+

u4

4
�Q:q

−
1

2
�u3 + u4�k · Q · q · k +

3

8
u4�k · Q · k��k · q · k� ,

�19�

where we have introduced the constants u�=
−�2kBTdRv��R�.

The general expression for the tensor order parameter of
the smectic-C phase can be obtained directly by averaging
the molecular tensor q taking into account the symmetry
properties of the phase. In the general case, the traceless
symmetric tensor qij can be expressed as a sum of all irre-
ducible orthogonal parts in the laboratory �k ,c ,h� frame

�

�

a
k

c
h

FIG. 3. Schematic of molecular orientation.
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qij = P2�cos ���kikj − �ij/3� +
1

2
sin2� cos 2��cicj − hihj�

+
1

2
sin 2� cos ��cikj + kicj� +

1

2
sin 2� sin ��hikj + kihj�

+
1

2
sin2� sin 2��cihj + hicj� , �20�

where the unit vector c is in the tilt plane and h is perpen-
dicular to the tilt plane, the angles � and � specify the ori-
entation of the unit vector a in the �k ,c ,h� frame, i.e., a
= �sin � cos � , sin � sin � , cos �� �see also Fig. 3�.

One notes that the last two terms in Eq. �20� are odd in �
and their statistical averages vanish due to the mirror sym-
metry of the smectic-C phase �invariance under �→−��.
Thus the orientational tensor order parameter Qij can be ex-
pressed as

Qij = Sk�kikj − �ij/3� +
1

2
Pk�cicj − hihj� +

1

2
V�kicj + cikj� ,

�21�

where Sk, Pk, and V are the three independent orientational
order parameters of the smectic-C phase which can be ex-
plicitly expressed as the following statistical averages of the
corresponding molecular quantities:

Sk = �P2�cos ���, Pk = �sin2� cos 2�� , �22�

V = �sin 2� cos �� . �23�

Here the order parameter Sk characterizes the tendency of
long molecular axes to order along the smectic layer normal
k. The order parameter Pk is the nematic tensor biaxiality,
i.e., it describes biaxial distribution of long molecular axes in
the smectic plane. Finally, the tilt order parameter V charac-
terizes the nondiagonal terms in the Q tensor, i.e., the tilt of
its main axis with respect to the layer normal k.

Substituting Eqs. �20� and �21� into Eq. �19� one obtains
the expression for the effective one-particle potential in
terms of the order parameters Sk , Pk ,V:

U1�a� = w1P2�cos �� + w2SkP2�cos �� + w3Pk sin2� cos 2�

+ w4V sin 2� cos � , �24�

where the parameters w1−4 are linear combinations of the
factors u1−4:

w1 = − u1/3 − �u3 + u4�/9, �25�

w2 = 2u2/3 + �u3 + u4�/9, �26�

w3 = u2/2 + u3/4 + u4/8, �27�

w4 = u2/2 + u3/8. �28�

As discussed in the Appendix, the order parameters Sk, Pk,
and V can be easily related to the conventional order param-
eters of the smectic-C phase appearing in the diagonal rep-
resentation of the tensor Q:

Qij = S�ninj −
1

3
�ij� + P�mimj − hihj� . �29�

The particular expressions for the tilt angle � and the order
parameters S and P in terms of the order parameters Sk, Pk,
and V in the k frame are

tan 2� =
V

Sk − 0.5Pk
, �30�

S =
1

4
Sk +

3

8
Pk +

3V

4 sin 2�
, �31�

P =
1

2
Sk +

3

4
Pk −

V

2 sin 2�
. �32�

It should be noted that in the present theory the SmA-
SmC transition is described as an order-disorder one. The
transition into the lower symmetry smectic-C phase is signi-
fied by the emergence of the new order parameter V which is
described as a statistical average of the corresponding micro-
scopic quantity. One can readily see from Eq. �30� that V
�� at small tilt angle �. The biaxial order parameter Pk,
which also vanishes in the smectic-A phase, is the secondary
order parameter of the smectic-C phase which is induced by
the tilt. Pk��2 at small ��1. From the general point of
view, the description of the SmA-SmC phase transition in
terms of a complete set of orientational order parameters
Sk , Pk ,V explicitly defined as statistical averages, distin-
guishes the present approach from the previous models based
on the tilt angle � as an order parameter which has a geo-
metrical rather than a statistical definition. We note also that
it is easier to measure the parameters Sk, Pk, and V experi-
mentally because they are defined with respect to the layer
normal k which is usually well specified in the experiment
�see, for example, Ref. �33��.

B. SmA-SmC phase transition

The effective one-particle potential �24�, derived in the
previous subsection, depends on the three order parameters
of the SmC phase, Sk, Pk, and V, and on the coupling con-
stants w1−4. These constants are the coefficients in the expan-
sion of the direct correlation function. In a complex fluid,
with both repulsion and attraction interaction the direct cor-
relation function can be approximately expressed as

C2�a1,R,a2� = C0�a1,R,a2� +
1

kBT
U�a1,R,a2� , �33�

where

U�a1,R,a2� = ��R − �12�Uatt�a1,R,a2� �34�

is the pair attraction interaction potential Uatt modulated by
the steric cutoff ��R−�12�. Here �12 is the minimum distance
of approach between the centers of two rigid molecules with
fixed mutual orientation. The step function ��R−�12�=0 if
the molecules penetrate each other, i.e., for R��12, and
��R−�12�=1 otherwise. C0�a1 ,R ,a2� is the direct correlation
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function of the reference hard core system which in the limit
of small molecular number density � is reduced to the second
virial approximation C0�1,2����1,2�−1.

In thermotropic liquid crystals, the phase transitions are
governed by the change of temperature, which means that
intermolecular attraction interaction is more important than
pure steric repulsion �41�. Thus, we assume that the second
term in Eq. �33� is predominant and thus the effective one-
particle potential �24� is temperature independent. Substitut-
ing Eqs. �11� and �24� into Eq. �9� one obtains the following
explicit expression for the free energy:

F̃S = F0 −
1

2
�2�w2Sk

2 + w3Pk
2 + w4V2� − �2kBT ln Z , �35�

where

Z =� da exp	−
U1�a�
kBT


 . �36�

Now this free energy can be minimized numerically with
respect to the order parameters Sk, Pk, and V to locate the
SmA-SmC transition and to determine the temperature de-
pendence of the order parameters.

One notes that the expansion of the direct correlation
function �13� contains four different terms. The second term
corresponds to the so-called Mayer-Saupe effective interac-
tion potential v2P2�a1 ·a2� which is responsible for the nem-
atic ordering. If one takes into account only this term, the
coefficients u1,3,4=0 and the parameter w1=0, while w3,4
=3 /4w2. It is obvious that on its own the Mayer-Saupe in-
teraction potential cannot induce the tilting transition be-
cause there is no coupling between molecular axes and layer
normal. At the same time, taking into account other terms in
Eq. �13� with small coefficients v1,3,4 we obtain a distinctive
tilting transition.

Two examples of the SmA-SmC phase transition de-
scribed by the current theory are presented in Fig. 4 where
the calculated temperature variation of all order parameters
in the SmA and SmC phases is shown. We have chosen w2
=−1 to normalize the otherwise arbitrary temperature scale.
Then the dimensionless constants w3 and w4 are chosen to be
close to −3 /4. One can readily see from Fig. 4 that the tem-
perature variation of the tilt angle � is similar to that of the
tilt order parameter V although � is always smaller than V.
Note that Figs. 4�a� and 4�b� correspond to the systems
which differ only by the value of the parameter w3. The
temperatures of the SmA-SmC transitions are exactly the
same while the absolute values and temperature variation of
the order parameters are different. Figure 4�b� describes a
relatively weak transition with low tilt. In contrast, Fig. 4�a�
corresponds to a strong tilting transition with steep variation
of the tilt angle below the transition point and large values of
the tilt. Both types of the transition have been observed in
the experiment for different materials. In both cases, how-
ever, the biaxial order parameter P is negligibly small. Thus
the SmA-SmC can be described as a simple rotation of the
uniaxial distribution of long molecular axes. The nematic
tensor order parameter remains uniaxial, and the nematic or-
der parameter S is practically not perturbed by the tilting.

Increasing the coefficients u1, u3, and u4 and thus increas-
ing the absolute values of w1 and �w3,4+3 /4� we obtain a
stronger transition illustrated in Fig. 5. Here the transition
occurs at lower value of the nematic order parameter S, and
the nematic ordering is noticeably perturbed by the tilting
transition. Such an increase of the nematic order just below
the SmA-SmC transition point is indeed usually observed
experimentally �see e.g., Figs. 5 and 6 in Ref. �42�, as well as
Ref. �31��.

Our general observation is that for all reasonable values
of the parameters, the nematic tensor Q remains approxi-
mately uniaxial in the director frame, i.e., P�1. This is
in-line with the known experimental data �43� on the various
order parameters of the smectic-C phase revealed by the IR
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FIG. 4. �Color online� SmA-SmC phase transition obtained for
the parameters w1=−0.03, w2=−1, w3=−0.85 �a� or w3=−0.78 �b�,
w4=−0.78.
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FIG. 5. �Color online� SmA-SmC phase transition perturbing the
nematic order. Thin dashed line shows the unperturbed S. The in-
teraction constants are w1=−0.3, w2=−1, w3=−1.4, w4=−1.2.

ORDER-DISORDER MOLECULAR MODEL OF THE… PHYSICAL REVIEW E 76, 051706 �2007�

051706-7



spectroscopy �44� and enables one to obtain simple analyti-
cal expressions for the SmA-SmC transition temperature and
the tilt angle.

Putting P=0 in Eqs. �30�–�32� one obtains

Sk = SP2�cos ��, Pk = S sin2�, V = S sin 2� . �37�

Next, these simple expressions can be substituted into the
free energy �35�, and the free energy can then be minimized
with respect to �. The tilt angle � plays the role of the
parameter in the free energy, and it can be shown that mini-
mization of the free energy with respect to such a parameter
is equivalent to minimization the averaged potential
�U1�S ,���, which yields

sin 2��sin2�S�9w2 + 4w3 − 16w4� − 6w1 − 6Sw2 + 4Sw4�

= 0. �38�

One can readily see that in addition to the trivial solution
�=0, this equation acquires the nonzero solution for � when
S exceeds

SAC =
3w1

4w4 − 3w2
. �39�

Thus in the present model the SmA-SmC transition occurs
when the nematic order parameter reaches the critical value
SAC. The transition temperature can be obtained from the
equation S�T�=SAC, where S�T� is the temperature variation
of S in the smectic-A phase, and the value of SAC is specified
by the parameters w1, w2, and w4. The transition temperature
calculated in this way exactly coincides with that found by
numerical minimization of the free energy. Equation �39�
also explains our observation that the transition temperature
is not affected by a change in w3 �as seen from Fig. 4�, since
the critical value SAC is simply independent of the constant
w3.

Below the transition point, the tilt angle is given by

sin2� =
S − SAC

SSAC

6�w1�
9w2 + 4w3 − 16w4

. �40�

Thus the temperature variation of the tilt in this model is
determined by that of the nematic order parameter S. It
should be noted that this equation does not specify the tem-
perature variation of the tilt angle in a simple way because
the nematic order parameter S is also affected by the tilt.
Nevertheless, Eq. �40� can be used to understand the role of
different parameters and to describe the temperature varia-
tion of the tilt directly in the case of relatively large S when
the influence of the tilt is small. One notes, for instance, that
the tilt angle increases with the increasing absolute value
�w3�, which is again confirmed by our numerical calculations.

It is interesting to describe the variation of the tilt analyti-
cally for the case of weak tilting transition which does not
perturb the order parameter S. The function S�T� can be ex-
panded in the vicinity of the transition temperature giving
�S−SAC�� �TAC−T�, and Eq. �40� yields the classical behav-
ior of the tilt angle ���TAC−T. At the same time, this is the
only reasonable limit, in which this classical temperature de-
pendence predicted by simple phenomenological models can

be obtained. Although the numerically calculated depen-
dence ��T� can be well fitted by the power law �TAC−T��

with the index � ranging from 1 /2 to 1 /4, the particular
values of � do not have any physical meaning because they
are not universal and are determined by a coupling between
the two order parameters � and S.

C. Weak layer contraction

Let us now explore how the tilting transition affects the
thickness of smectic layers. Although our model does not
enable one to obtain the layer spacing directly, we can ex-
tract important quantitative information from the calculated
orientational distribution function. Indeed, the average pro-
jection of the molecular unit vector onto the layer normal
��cos � � � can be used as a suitable surrogate reflecting the
variations of the layer thickness �45�. This intuitive assump-
tion is, in fact, strongly supported by recent experimental
results. It has been shown �33� that for several different
smectic-C materials there exists a good correlation between
the temperature variation of the smectic periodicity p and the
orientational order parameter Sk=1−3 /2�sin2��. On the
other hand, the temperature variation of Sk should be quali-
tatively similar to that of the average projection of the mo-
lecular long axes ��cos � � �. Indeed, for a relatively high ori-
entational order parameter S

��cos ��� � 1 − 0.5�sin2��, i.e., ��cos ��� � �2 + Sk�/3,

�41�

and therefore the changes in Sk are proportional to those in
the projection ��cos � � �.

Temperature variation of the layer spacing evaluated for
the same two systems as in Fig. 4 is presented in Fig. 6. One
can readily see that while the increase in the tilt angle pro-
motes the decrease of the layer thickness, the enhancement
of the nematic order below the transition point leads to an
increase in the spacing. As a result, the contraction can be
weak or even absent if the tilting is not strong enough, and
the two factors approximately compensate each other. This
result suggests a simple explanation of weak layer contrac-
tion observed in de Vries-like materials with low tilt �23�.
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FIG. 6. Temperature dependence of the average projection of
long molecular axis on the layer normal. The interaction constants
are taken as in Fig. 4�a� �solid line� and Fig. 4�b� �dashed line�.

GORKUNOV et al. PHYSICAL REVIEW E 76, 051706 �2007�

051706-8



At the same time, we obtain anomalously weak layer con-
traction in a number of cases with a strong tilt. A typical
example is presented in Fig. 7, which corresponds to the
same system as Fig. 5. In Fig. 7 the temperature variation of
the layer spacing calculated numerically is compared with
that expected from the classical relation

pC�T� = pA�T�cos � . �42�

Here the layer spacing pA�T� can be found by extrapolation
from the SmA phase. In our numerical calculations the tem-
perature dependence of pA�T� is directly obtained by sup-
pressing the tilting transition.

An apparent reason for the anomalously low layer con-
traction seen in Fig. 6 is the rapid increase of nematic order
below the transition temperature, which compensates the de-
crease in thickness caused by the tilting. Remarkably, the
stronger is the tilting the more differs the thickness from the
classical dependence �42�.

This is how the weak layer contraction can be understood
both in the case of low and high tilt. On the other hand, such
behavior is not obtained for all systems, and some special
conditions must be satisfied. The relations �37� make it pos-
sible to derive a simple analytical condition on the effective
interaction potential, which is sufficient to generate an ap-
proximately constant layer spacing in the SmC phase. Firstly
we take into consideration that the temperature variation of
the layer spacing is qualitatively similar to that of the order
parameter Sk, as discussed above. One notes that the ideal
classical temperature variation of Sk decreasing by the factor
cos � can be obtained only in the case of a constant order
parameter S. This is only possible if S is large and close to
saturation, i.e., S�1. In contrast, in the case of relatively low
S, which is typical for de Vries materials, the decrease of Sk
�and thus the decrease of the layer spacing� in the SmC
phase, determined by the factor of P2�cos ��, is at least par-
tially compensated by the growth of S. This also explains
why the ideal classical layer contraction is rarely observed.
The explicit condition which corresponds to a constant layer
spacing can be obtained by substituting �40� into the expres-
sion for Sk from �37�, which yields

Sk = SAC + �S − SAC�
w3 − w4

9w2/4 + w3 − 4w4
. �43�

One can readily see that Sk=SAC=const if w3=w4. This con-
dition is supported by our numerical calculations as can be
seen from Fig. 4�b� and the dashed line in Fig. 6.

Note that in contrast to the original qualitative model of
de Vries, our explanation of the anomalously weak layer con-
traction does not involve any additional assumptions about
the specific form of the orientational distribution function in
the SmA phase, which would correspond to a cone model
with a constant molecular tilt made by de Vries. In the
present theory, both conventional and de Vries smectics C
are described by the same molecular model, and the weak
layer contraction simply corresponds to a particular relation-
ship between the coupling constants in the effective interac-
tion potential combined with the condition of relatively low
values of the nematic order parameter S which leads to a
constant projection of the molecular orientational distribu-
tion on the smectic layer normal.

D. Tricritical behavior at the transition

Many conventional smectic materials undergo the SmA-
SmC transition according to the classical second order sce-
nario with no temperature hysteresis and small discontinuity
of the heat capacity cp�T� at the transition point. On the other
hand, in a number of de Vries–type materials the transition is
often concluded to be weakly first order on the basis of sharp
peaks on the cp�T� curve. At the same time, the measured
temperature interval of the phase coexistence is extremely
small, of the order of 10 mK �34,42�. In this subsection we
show that these experimental data can also be interpreted in
the framework of the present model by considering the sec-
ond order SmA-SmC transitions which are close to the tric-
ritical point.

Let us first consider the temperature variation of the heat
capacity predicted by the present model. The orientational
entropy of the smectic liquid crystal can be evaluated as

S = − �ln f�a�� �44�

using the distribution function �11� and the effective one par-
ticle potential �24� with the order parameters obtained from
the free energy minimization. Now the heat capacity can be
expressed as

cp�T� = kBT
�S
�T

. �45�

Temperature variation of the heat capacity which corre-
sponds to the classical transitions presented in Fig. 4 is
shown in Fig. 8. The behavior of cp is typical to a second
order phase transition. The amplitude of the discontinuity of
the heat capacity is directly related to the tilting amplitude.
The transition with lower tilt and lower layer contraction
makes a smaller effect on the variation of the heat capacity.

A different result is obtained when the transition is ac-
companied by a noticeable variation of the nematic order
parameter. The coupling between � and S results in a quali-
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FIG. 7. The effect of the perturbation of nematic order on the
layer spacing. The solid line shows the real behavior with constants
as in Fig. 5, while the dashed line is calculated according to the
classical formula �42�.
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tative change of the cp�T� dependence. Here the discontinuity
is accompanied by a pronounced peak of the heat capacity as
illustrated in Fig. 9. The stronger is the nematic ordering
affected by the tilting transition, the higher is the cp�T� peak
at the transition point. One notes that the shape of the curve
resembles the experimentally observed first-order-like
anomaly of the heat capacity �34�, although in the present
model the transition always remains continuous. This behav-
ior may be observed when the transition is close to the tric-
ritical point.

Thus one concludes that the coupling of tilting and nem-
atic order parameters can be responsible for both weak layer
contraction and heat capacity anomaly, which are frequently
observed in the same materials. These phenomena may also
occur independently if the weak layer contraction is mainly
due to a low tilt, or if the perturbation of the nematic order is
too weak to compensate the layer shrinkage.

IV. INTERMOLECULAR INTERACTIONS

The results obtained in the previous section do not depend
on any particular molecular model because the theory is
based on a general expansion of the direct correlation func-

tion �13�. In this section we discuss how the coefficients in
such an expansion can be evaluated for particular models of
the intermolecular interaction, which determine C2 according
to Eq. �33�. First, let us demonstrate how Eq. �24� can be
derived in an alternative way based on the symmetry prop-
erties of the pair correlation function.

Let us consider the effective pair potential from Eq. �33�
integrated over the intermolecular vector R within the smec-
tic plane as implied by Eq. �10�:

Ũ�a1,a2� = �2� dRU�a1,R,a2� . �46�

The potential Ũ depends on the polar angles �1, �2 and the
absolute value of the difference of the azimuthal angles, �
=�2−�1. Thus it can be expressed as the following series of
spherical harmonics:

Ũ��1,�2,�� = �
n=0

�

�
l=0

�

�
m=0

min�n,l�

Uln
�m�Pn

�m��cos �1�

Pl
�m��cos �2�cos�m�� , �47�

where P�
��� are the associated Legendre polynomials. For a

given particular Ũ, the expansion coefficients can be evalu-
ated as the following integrals:

Uln
�m� =

�2n + 1��2l + 1��l − m� ! �n − m�!
4	�l + m� ! �n + m�!

�
0

	

d�1 sin �1Pn
�m��cos �1�

�
0

	

d�2 sin �2Pl
�m��cos �2�

�
0

2	

d� cos�m��Ũ��1,�2,�� . �48�

In a nonpolar liquid crystal phase the molecular heads and
tails are statistically equivalent and thus the effective inter-
action potential has to be invariant under the transformation
�i→�i+	, which excludes the terms with odd n and l from
Eq. �47�. The permutational symmetry 1↔2 yields that
Uln

�m�=Unl
�m�.

It is reasonable to assume that the thermodynamics of the
orientationally ordered phases is not governed by higher har-
monics of the expansion corresponding to higher rank orien-
tational order parameters. Our aim is to show that it is suffi-
cient to take into account only the terms with lower l ,n ,m to
obtain realistic scenarios of the SmA-SmC phase transition
described in the previous section. If we truncate the series
and keep the harmonics with l ,n�2, the remaining terms
can be expressed as

Ũ��1,�2,�� = w1�P2�cos �1� + P2�cos �2��

+ w2P2�cos �1�P2�cos �2�

+ w3 sin2�1 sin2�2 cos 2�

+ w4 sin 2�1 sin 2�2 cos � , �49�
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FIG. 8. Discontinuity of the heat capacity due to a conventional
second order A-C transition. The interaction constants are the same
as in Figs. 4�a� �solid line� 4�b� �dashed line�.
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nematic order by the tilting transition. The interaction constants are
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where the constants

w1 = U20
�0�, w2 = U22

�0�, w3 = 9U22
�2�, w4 = − 9/4U22

�1�

�50�

can readily be calculated using Eq. �48�.
Now the effective one-particle potential can be evaluated

by averaging of Eq. �49� over the orientation of the molecule
“2.” Choosing the c axis along the direction of the tilt in the
SmC phase one obtains that �sin��2��= �sin�2�2��=0, and the
resulting expression for the effective potential takes exactly
the form of Eq. �24�.

Therefore, we have developed a procedure which enables
one to trace the relation between the intermolecular interac-
tion potential and the thermodynamic properties of smectic-A
and -C phases. Below we illustrate this using simple interac-
tion potentials.

A. Gay-Berne potential

In liquid crystals, the main part of pair interaction poten-
tial is determined by the short-range attraction and repulsion
of hard elongated molecules �see Fig. 10�a��. Among existing
models, the Gay-Berne �GB� potential �46,47� is popular for
its relative simplicity and capability of reproducing orienta-
tional order of anisotropic liquids �47,48�.

The GB potential expresses the pair intermolecular inter-
action energy in the Lenard-Jones form

UGB�a1,R,a2� = 4 ��a1, r̂,a2���R/r0 − ��a1, r̂,a2� + 1�−12

− �R/r0 − ��a1, r̂,a2� + 1�−6� �51�

with the orientationally dependent range

��a1, r̂,a2� = 	1 −
�

2
� �r̂ · a1 + r̂ · a2�2

1 + �a1 · a2

+
�r̂ · a1 − r̂ · a2�2

1 − �a1 · a2
�
−1/2

�52�

and strength

��a1, r̂,a2� = �0�1 − �2�a1 · a2�2�−1/2

	1 −
��

2
� �r̂ · a1 + r̂ · a2�2

1 + ��a1 · a2

+
�r̂ · a1 − r̂ · a2�2

1 − ��a1 · a2
�
2

. �53�

Here r0 is the breadth of the molecule, and the constants �
= ��2−1� / ��2+1� and ��= ���1/2−1� / ���1/2+1� are deter-
mined by the relative elongation of the molecule � as well as
by the ratio �� of well depths for side-to-side and end-to-end
molecular orientations.

In accordance with Eq. �34� we multiply the GB potential
by the steric cutoff ��R−r0��a1 , r̂ ,a2��, substitute this into
Eqs. �46�–�50�, integrate numerically, and finally obtain the
parameters of the corresponding one particle potential.

A typical dependence of the normalized values of the con-
stants w1−4 on the well depth � is presented in Fig. 11. As
expected, the Gay-Berne interaction does stabilize the nem-
atic order in the SmA phase because all constants are nega-
tive, but it does not promote the tilting phase transition. The
SmA-SmC transition can only occur if the constant w4 is
smaller than 3w2 /4 �as follows from the condition SAC�0 in
Eq. �39��, which does not happen for any set of the model
parameters.

B. Electrostatic dipole-dipole interaction

The electrostatic interaction between anisotropic mol-
ecules can qualitatively be described in terms of static and
induced multipole moments of various molecular fragments.
For electrically neutral but polar molecules, the dipolar inter-
actions are usually predominant and are expected to contrib-
ute substantially to the effective interaction potential. Let us
first consider the electrostatic interaction between two per-
manent dipoles d1 and d2 of the molecules 1 and 2, where
the dipole d=d�a+d�b has an arbitrary orientation in the
molecular frame and is located on the axis of the uniaxial
molecule. After averaging over all orientations of the short
molecular axis b and the states with +a and −a �head-tail
invariance�, the arbitrary off-center dipole is effectively

a)

b) c)

a2
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�
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�
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�
2d
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2d
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�
2d

�
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E� �

FIG. 10. �Color online� Schematics of model pair molecular
interactions: hardcore repulsion attraction �a�, electrostatic dipole-
dipole coupling �b�, and dipolar induction interaction �c�.

2 4 6 8 10
-1.0

-0.5

0.0

0.5

4

3

2

1

w
1,
2,
3,
4
/|
w
2|

Well depth ratio, �'

FIG. 11. �Color online� The ratios wi / �w2� as a function of well
depth anisotropy calculated for the Gay-Berne potential with the
molecular elongation �=4. The indices i are indicated.
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transformed into a symmetric pair of antiparallel longitudinal
dipoles �see Fig. 10�b��, and the resulting interaction is ex-
pressed as a sum of four dipole-dipole terms

Udip�a1,R,a2� = Udd�d1
+,d2

+,r1
+ − r2

+� + Udd�d1
+,d2

−,r1
+ − r2

−�

+ Udd�d1
−,d2

+,r1
− − r2

+� + Udd�d1
−,d2

−,r1
− − r2

−� ,

�54�

where the single dipole-dipole interaction has the standard
form

Udd�d,d�,r� = − r−5�3�r · d��r · d�� − r2�d · d��� , �55�

the interacting dipoles are parallel to the long axes, di
±

= ±d� /2ai and located at ri
±=ri±�ai.

The coefficients of the effective one-particle potential
arising from the dipole-dipole interaction are again obtained
numerically using Eqs. �46�–�50� and the same GB cutoff in
Eq. �34� as above. We have found that the absolute values of
the coefficients grow almost linearly with the distance �. At
the same time, the ratios of different coefficients wi remain
practically constant as illustrated in Fig. 12. The obvious
feature of the dipole-dipole interaction is the negative value
of the constant w4, while all other constants are positive.
Thus, the combination of the dipole-dipole interaction with
the reference GB potential may be responsible for the SmA-
SmC phase transition. The temperature variation of the order
parameters around the transition caused by the electrostatic
dipole-dipole interactions are presented in Fig. 13 for a par-
ticular value of the molecular dipole.

One notes that the SmC phase stabilized by electrostatic
interaction between pairs of antiparallel molecular dipoles
has been found in computer simulations �15�. According to
Ref. �15� the longitudinal molecular dipoles appear to be
much more effective in stabilizing the SmC phase than the
transverse ones, which supports the present model. One
notes that the far field of the pair of molecular dipoles coin-
cides with that of an effective quadrupole. Therefore, our
results also correspond to the case when the tilting transition

is caused by the quadrupole-quadrupole interactions. This
effect has also been observed in computer simulation �14�.

C. Dipolar induction interaction

Another strong dipolar interaction is the induction inter-
action between a permanent molecular dipole and the polar-
izability of neighboring molecule. We assume for simplicity
that the polarizable core is located in the middle of the mol-
ecule, and the main axis of the polarizability tensor � coin-
cides with the long molecular axis a:

��� = ��a�a� + ������ − a�a�� . �56�

The permanent molecular dipole has an arbitrary orientation
�see Fig. 10�c��.

Similarly to the case of the electrostatic dipole-dipole in-
teraction, averaging over all orientations of the short molecu-
lar axis b and the opposite directions of the long axis a
results in four induced dipole-dipole contributions to the to-
tal pair interaction potential. All the four contributions have
the same mathematical form. For example, the contribution
related to the d2

+ dipole is expressed as

U2
+�a1,R,a2� = �1

�a1 · R2+�2

R2+
8 + �2

�a2 · R2+�2

R2+
8

+ �3
1

R2+
10 �3�a1 · R2+��a2 · R2+� − R2+

2 �a1 · a2�� ,

�57�

where R2+=R+�a2 is the distance between the dipole and
the polarizable core of the neighboring molecule, and where
the coefficients �1,2,3 depend on the components of the mo-
lecular dipole and the molecular polarizability

�1 =
3

2
d�

2 ��� − ��� , �58�

�2 = 3�d�
2 −

1

2
d�

2 ���, �59�
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FIG. 12. �Color online� Normalized coefficients wi / �w2�, i
=1,2 ,3 ,4 arising from the dipole-dipole electrostatic potential as a
function of the dipole location � calculated with the hard rod cutoff
�=4.
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�3 = �d�
2 −

1

2
d�

2 ���� − ��� . �60�

One notes that �1 and �3 vanish if one neglects the aniso-
tropy of molecular polarizability. The coefficients w1−w3
calculated numerically for this simple case are presented in
Fig. 14. Negative values of the constant w4 indicate that the
dipole-dipole induction interaction can also promote the
SmA-SmC phase transition. We have found out that the ad-
dition of this interaction to the Gay-Berne repulsion-
attraction indeed leads to the pronounced transition.

V. CONCLUSIONS

We have presented a simple phenomenological model and
a detailed molecular theory which enable one to describe the
properties of the SmA-SmC transition in smectic liquid crys-
tals with both conventional and anomalously low layer con-
traction. The phenomenological model yields explicit ana-
lytical expressions for the smectic layer spacing in the
smectic-A and -C phases which have been used to produce
very good fits of the experimental data for materials of dif-
ferent molecular structure and exhibiting different degrees of
layer contraction.

In contrast to the previous models, the present statistical
theory is based on a complete set of orientational order pa-
rameters of the SmC phase. In the case of the SmC phase
composed of uniaxial molecules, there are three independent
order parameters Sk, Pk, and V which characterize the orien-
tational ordering with respect to the smectic layer normal,
the biaxiality in the smectic plane and the molecular tilt,
respectively. These order parameters are defined in the labo-
ratory frame as explicit statistical averages of the corre-
sponding microscopic quantities. Thus in this theory the
SmA-SmC transition is described as an order-disorder phase
transition. The conventional order parameters S and P de-
fined in the director frame as well as the tilt angle � are
expressed in terms of Sk, Pk and V via the exact formulas
�22�, �23�. One notes that from the experimental point of
view it is more convenient to measure the order parameters

in the laboratory frame because this can be done directly
without additional measurements of the tilt angle.

Both phenomenological and the molecular theory indicate
that the SmA-SmC transition occurs when the nematic order
parameter S exceeds some critical value. Thus a certain de-
gree of orientational disorder, still present in the system, is
required for the transition to occur. The present statistical
theory is based on the systematic expansion of the effective
pair intermolecular interaction potential, which contains sev-
eral different terms. The properties of different types of tilt-
ing transition are then determined by an interplay between
these terms, which have different roles in the case of partial
orientational disorder. In practice, the behavior of the system
depends on the coupling coefficients, which effectively are
the model parameters. Therefore, the general results obtained
in this paper are independent of a particular choice of inter-
molecular interactions.

At the same time, we have developed a procedure which
enables one to calculate numerically the corresponding cou-
pling constants for a given intermolecular potential. We have
made such calculations for the standard Gay-Berne potential
and its combinations with the electrostatic dipole-dipole and
induction dipole-dipole interactions. It has been shown that,
as expected, the Gay-Berne potential alone does not promote
the SmC phase while both electrostatic and induction dipole-
dipole interactions may be responsible for the SmA-SmC
transition. These particular results are confirmed by recent
computer simulations �14,15�. We note, however, that the
simple interaction models should not be taken too seriously
because of the complexity of real organic mesogenic mol-
ecules. In fact, there exist a number of other possible inter-
actions which may produce the same effect. Further conclu-
sions here will depend on a careful estimate of the
corresponding contributions for particular materials and cer-
tain molecular structure.

In spite of its relative simplicity, the present molecular-
statistical model enables one to reproduce a broad variety of
different transition scenarios. Apart from the conventional
tilting transition, the theory describes the anomalously weak
layer contraction in the smectic-C phase observed in some
smectic liquid crystals which are also often called the de
Vries–type materials. It should be stressed, however, that the
results of this paper do not support the original model of de
Vries. Indeed, the de Vries model is based on the assumption
that the orientational distribution of long molecular axes in
the smectic-A phase of a conventional smectic material is
qualitatively different from that in smectics with anoma-
lously weak layer contraction. In conventional smectics A the
long molecular axes are distributed around the layer normal
while in other materials the axes are approximately distrib-
uted on the cone making a fixed angle with the layer normal.
Even if the cone model is considered as a limiting case, there
is still an assumption that orientational distributions are sub-
stantially different in the two different types of smectics A.
In our theory, however, the shape of the orientational distri-
bution function in the smectic-A phase is qualitatively the
same in conventional smectics and smectics that tilt almost
without layer contraction. Thus the present theory suggests
an alternative explanation of the weak layer contraction in
the smectic-C phase.
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FIG. 14. �Color online� Normalized coefficients wi / �w2� arising
from the dipole-dipole induction interaction potential as a function
of the dipole location � calculated for the isotropic molecular po-
larizability and the hard rod cutoff �=4.
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In this theory, there are two major factors determining the
temperature variation of the layer spacing. On the one hand,
the layer spacing is decreasing with the increasing tilt. On
the other hand, the spacing increases with the increasing
nematic order parameter. These two factors may compensate
each other to some extent if the nematic order parameter is
relatively low in the smectic-C phase and thus possesses a
significant temperature dependence. As a result the ideal con-
ventional layer contraction, determined by the factor of
cos �, may occur only in materials with high and saturated
nematic order parameter. Finally it has been shown in this
paper that for relatively weak nematic order and for a certain
class of intermolecular interaction potentials the compensa-
tion may be nearly complete, and the tilt in the smectic-C
phase will be accompanied by almost no layer contraction. In
particular, there exists a simple relationship between the two
coupling constants in the model interaction potential which
enables one to reproduce the anomalously weak layer con-
traction regardless of the values of the remaining parameters.

The present theory also enables one to reproduce a corre-
lation between the rapid growth of the nematic order param-
eter below the SmA-SmC transition, anomalously weak layer
contraction, and the experimentally observed anomaly of the
heat capacity which may correspond to the first order transi-
tion. The underlying physical phenomenon here is a coupling
between the nematic order parameter and the tilt which en-
hances the nematic order, expands the smectic layers, and
affects the temperature dependence of the order parameters
and related thermodynamic characteristics. It has been shown
that the experimentally observed anomaly of the heat capac-
ity in some smectic materials can qualitatively be explained
using the model of a second order SmA-SmC transition
which is close to the tricritical point.

Recently a phenomenological model describing the
anomalously weak layer contraction has also been proposed
by Saunders et al. �49�. The model is based on a coupling
between the tensor order parameter and the wave vector of
the smectic structure which is rather similar to the one con-
sidered in Sec. II, although some assumptions are different.
Nevertheless, the authors arrive at the same general conclu-
sion that the weak layer contraction in the smectic-C phase is
not related to any molecular pretilt in the smectic-A phase,
but is determined by temperature variation of the nematic
order parameter and by specific restrictions on the values of
phenomenological parameters. On the other hand, the model
�49� predicts a coexistence between two different smectic-A
phases and a nonmonotonous behavior of the birefringence
in the Sm-A phase which does not follow from our model.
This may be related to the temperature variation of the smec-
tic order parameter which is not taken into account in the
present model, or to specific assumptions about the tempera-
ture variation of the nematic order parameter made in Ref.
�49�.

Finally, we note that in this paper we have considered the
SmA-SmC transition in a system of effectively uniaxial mol-
ecules. Thus we have neglected the biaxial ordering of short
molecular axes which is always present to some extent in
any smectic-C liquid crystal. A more detailed study of the
influence of molecular biaxiality on the transition will be
published separately.
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APPENDIX: ORDER PARAMETERS IN SMECTIC-C
PHASE

It is well known since the work of Straley �50� that the
tensor order parameter which describes the ordering of long
molecular axis a can be expressed in the diagonal form as

Qij = S�ninj −
1

3
�ij� + P�mimj − hihj� , �A1�

where

S = �P2�cos ���, P = �sin2� cos 2�� . �A2�

Here the director n is the primary axis of the tensor Q which
corresponds to the maximum eigenvalue, S is the conven-
tional orientational �nematic� order parameter which charac-
terizes the ordering of long axes along the director, and P is
the biaxial order parameter which describes the biaxial dis-
tribution of long molecular axis around the director. The
angles � and � are defined as the polar and azimuthal angles
of the molecular axis a in the director frame �n ,m ,h�.

In the smectic-C phase, the director n is inclined with
respect to the layer normal k, while another primary axis h
of the tensor Q is parallel to the twofold symmetry axis in
the direction perpendicular to the tilt plane. Thus in the di-
agonal frame the tensor order parameter Q is specified by
three parameters: scalar order parameters S and P and the tilt
angle � between the director and the smectic layer normal.

In some cases the representation of the tensor Q in the
diagonal frame is not very convenient because the orienta-
tion of the director may not be known �for example, in com-
puter simulations�. At the same time, the orientation of the
smectic layer normal k is usually known and the tensor Q
can also be represented in the frame �k ,c ,h� �see Fig. 3�
based on the layer normal k:

Qij = Sk�kikj − �ij/3� +
1

2
Pk�cicj − hihj� +

1

2
C�kicj + cikj� ,

�A3�

where

Sk = �P2�cos ���, Pk = �sin2� cos 2��, V = �sin 2� cos �� .

�A4�

and where the angles � and � are the polar and azimuthal
angles of a in the k frame. Accordingly, the tensor Q here is
specified by another set of three order parameters Sk, Pk, and
V. The parameter Sk describes the ordering of long molecular
axes with respect to the layer normal k, and the parameter Pk
is the measure of biaxiality in the smectic plane. One notes
that in the smectic-C phase the tensor Q is not diagonal in
the k frame, and the corresponding off-diagonal element V
describes the tilt. In the smectic A phase, V=0 because the
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director n=k and the tensor Q must be diagonal.
It is important to note that in Eqs. �A4� all three order

parameters are explicitly expressed as statistical averages
while for the representation Eq. �A1� the tilt angle � has
more of a geometrical meaning. The tensor Q in the form
�A3� can be diagonalized and thus expressed in the form of
Eq. �A1�. As a result, one obtains the following rigorous
relationships between the two sets of order parameters:

tan 2� =
V

Sk − 0.5Pk
, �A5�

S =
1

4
Sk +

3

8
Pk +

3V

4 sin 2�
, �A6�

P =
1

2
Sk +

3

4
Pk −

V

2 sin 2�
. �A7�

One can readily see that the tilt order parameter V is a mo-
notonously growing function of �, and at small �, V��.

The order parameters Pk, Sk and V are particularly useful
when there exist several ordering second rank tensors which
may correspond to different molecular fragments or to long
and short molecular axes. All such tensors can be expressed
in the diagonal form �A1�. At the same time, the orientation
of the director in the tilt plane of the smectic-C phase is not
specified by any symmetry, and thus in the general case dif-
ferent ordering tensors will correspond to different directors
and different tilt angles. This confusion may be avoided us-
ing the order parameters Sk, Pk, and V for every ordering
tensor.
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